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Abstract

This paper addresses the problem of linear crack quantification, crack depth estimation and localization, in struc-
tures. An optimization technique based on a finite element model for cracked structural elements is employed in the
estimation of crack parameters for beam, truss and two-dimensional frame structures. The modal data for the cracked
structures are obtained by solving the corresponding eigenvalue problem. The error in the modal data is simulated by
an additive noise that follows the normal distribution. The simulated reduced modal data is expanded using the
eigenvector projection method. Numerical examples showed that this technique gives good results for cracks with high
depth ratio. The accuracy of the estimated crack parameters depends on (1) the number of modes used, (2) the error
level in the cracked structure modal data and (3) the number of measured degrees of freedom in the case of reduced
modal data.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the past few years the problem of health monitoring and fault detection of structures has received
considerable consideration. It was noted that fault cause changes in the dynamic response of the structure.
The changes can be considered as an indication of the health of the structure. Consequently, these methods
of fault detection are based on the comparison of the dynamic response of the healthy structure with the
dynamic response of the defected structure.

The comparison is carried out through some algorithm, which employs the modal data of the healthy
and defected structure. Therefore, the fault detection problem is dependant on the modal data for the
healthy structure, the modal data for the defected structure and the algorithm that uses these data and
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provides information about the state of the structure. Each of these items has its own aspects and associated
problems that affect the results of the fault detection.

In fault detection literature, four different levels for fault detection have been identified. The first level is
the detection of a fault in which the algorithm just indicates that a fault exists in the structure. This level is
the simplest level and a simple comparison of the modal data for the healthy and defected structures can
achieve this task. In level two, the algorithm locates the defect in the structure. Level three in fault detection
gives an estimate of the severity of the defect in addition to the detection and localization (levels one and
two). The last level (level four) is that which provides an estimate of the remaining operational life of the
structure.

Several algorithms for fault detection were invented and developed during the past few years. The
differences between these algorithms are the type of dynamic data that is used and the level of detection. A
full literature survey for the fault detection and health monitoring of structures, is presented by Scott et al.
(1996) and Mottershead and Friswell (1993). The methods that are based on the frequency change are
classified as either forward (Fox, 1992; Friswell et al., 1994) or inverse problems (Dado, 1997; Dado and
Abuzid, in press). Such methods have a significant limitation because of the low sensitivity of the natural
frequencies for cracks with small depth. Therefore, high level of defect or measurements with high accuracy
is required for the detection of cracks with small depth. These methods are considered as level one (de-
tection).

The second set of algorithms is based on the change in mode shapes. The modal assurance criteria
(MAC) as an indication about the location of a defect, was first introduced by West (1984). Since then
several different measures for the fault detection such as the partial modal assurance (PMAC) and coor-
dinate modal assurance (COMAC) criterion (Kim and Bartkowicz, 1993) and the structural translational
and rotational error check (Mays, 1992), were developed. These algorithms do not need a model for the
defected structure, which is considered as being their main advantage. A similar set of algorithms uses the
change in the mode shape curvature or the strain mode shapes as an alternative for the mode shapes. These
methods have the same advantage that is they do not need a model for the structure.

Another class of fault detection algorithms are based on the dynamically measured flexibility matrix of
the defected structure, similar to these methods that are based on the change on mode shapes, different
criterion were developed to provide and indication about the defect. The direct comparisons of the flexi-
bility of the heathery and delectated structure (Pandy et al., 1991), the unity check method (Lin, 1990) and
the stiffness error matrix (Park et al., 1988) were used throughout the fault detection literature.

Matrix update methods (Simth, 1992; Linder and Goff, 1993; Kaouk and Zimmerman, 1994) are based
on modifying the structure matrices (mass, stiffness and damping matrices) such that the modal data for the
defected structure is reproduced. The differences between these methods are the objective function, the
constraints definition and the numerical schemes employed in the optimization.

In such a method, a model for the healthy and defected structures is required. The finite element method
is usually used in modeling of the healthy and defected structures. It is usually assumed that the defect
affects the stiffness matrix of the defected element but not the mass matrix. The stiffness matrix is repre-
sented as a certain fraction of the healthy element stiffness matrix (Abdalla et al., 2000; Kaouk and
Zimmerman, 1994) or a localized reduction in the modulus of elasticity. This method is considered as a level
three fault detection method.

Many other researches have addressed different issues in fault detection like the effect of noise in the
measured modal data, the number of modes used in fault detection, using reduced modal data and applying
different schemes in the optimization (Abdalla et al., 2000; Kaouk et al., 1994; Friswell et al., 1997, 1998). It
is noted that the fault detection algorithms generally localize the defect by identifying the defected element
and the fault severity is indicated as a reduction in the element stiffness. The fourth level of fault detection
that provides an estimate of the remaining operational life, needs more information about the defect
parameters and the information provided by these fault detection algorithms are not sufficient. Naturally,
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acquiring more specific information about the defect, which can be used in the fourth level of fault de-
tection, needs a model for the defect that relates the defect parameters to the change in structure dynamic
properties (mass, stiffness and damping matrices). Such a model, if available, can be employed in fault
detection.

Structures are generally subjected to different forms of faults such as failure of joints, cracks and
buckling or complete loss of elements. These defects are generally nonlinear and difficult to model, which
can be considered as the main reason for trying to develop fault detection algorithms that do not need a
model for the fault such as MAC and the PMAC. However, cracks are the most common type of defects
that occur in structures. Much has been done to model the effect of cracks in simple structural elements
such as axially loaded members and beams. It was found that analytical modeling of cracks is very difficult
especially for practical structures with multiple cracks.

Shpli and Dado (submitted for publication) described a procedure for derivation of modeling finite
structural elements with linear (open) cracks in terms of the crack parameters. They derived stiffness
matrices for rode, beam and two-dimensional frame finite elements. The derived models are function in the
crack depth ratio and the crack location (crack parameters). These models were used in estimating the
natural frequencies for beam, truss and two-dimensional frame structures and verified by comparing their
results with published experimental and analytical data.

This study employs these models in crack parameter estimation for structures that contain defected
elements. The effect of the noise in the modal data, number of modes used and using reduced modal data
will be studied for beam, three-dimensional trusses and two-dimensional frame structures. The modal data
for the defected structures are obtained by solving the corresponding eigenvalue problem for the cracked
structures and the noise is simulated by an additive white noise.

2. Cracked structure model

A crack, when presented in a structural element causes a reduction in the stiffness matrix of the element.
Therefore, the stiffness matrix of a cracked element is expected to be a function of the crack depth and the
crack location. Shpli and Dado (submitted for publication) have presented a general procedure for modeling
cracked finite structural element. In their model the crack was represented by a localized compliance and the
stiffness matrix of the cracked element is expressed in terms of the crack compliance and location in addition
to the material and geometrical properties. In general the cracked element stiffness matrix is given by

Ky :Kd(QX) (1)

where K, is the cracked element stiffness matrix, ¢ is the crack compliance and x is the crack location in
elemental local coordinates. This stiffness matrix can be used to model healthy as well as cracked elements
because it is reduced to the healthy element stiffness matrix when the crack compliance is zero.

The localized stiffness for a cracked element is function of the crack depth, type of loading, and mode of
deformation in addition to the geometrical and material properties of the element. The localized stiffness of
a crack is given by (Dimarogonas and Stephen, 1983):

Ou; 0 a
Cztfza—})j—w/o J({)d¢ (2)

where J(a) is the strain energy density function, P; is the force that causes the deformation, 7, is the force in
the direction of deformation and a is the crack depth. The strain energy density function is given by

2
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where K is the stress intensity factor for the crack in different modes of deformation, which is a function of
the crack depth, B is the width of the element cross-section, E is the modulus of Elasticity, v is the Poisson’s
ratio, E' is E for plane stress and E/(1 — v) for plane strain and o = 1 + v. Substituting Eq. (3) in the Eq. (2)
gives the general equation for the crack compliance, which is given by

2 2 2
1 62 B ra 6 6 6
Cij = 7 W /0 /0 (Z}:Ku) + (;Km + o ;KUI[ déd¢ (4)

In general, a crack is subjected to six different types of loading three forces and three moments along the
x, y and z directions. Therefore, the crack compliance has 36 components, which are arranged in a 6 x 6
matrix. This matrix is symmetric because of the reciprocity property of the compliance.

Shpli and Dado (submitted for publication) derived a cracked stiffness matrix for truss, beam and two-
dimensional frame elements. These models are presented in Appendix A Egs. (A.1)-(A.3). These equa-
tions were derived by considering a cracked finite element that has a crack depth « and located at x form the
start node of the finite element. The cracked element was modeled as two healthy finite elements that
are coupled by a localized compliance element, which represents the effect of the crack. The nodal dis-
placements nodal forces relations for the overall element were derived and re-arranged in the finite element
form.

The derived models were used to predict the vibration response of several types of engineering structures
with multiple cracks. These models were verified by comparing the vibration response of different types of
engineering structures that have cracked elements with published experimental and theoretical results. The
comparison has indicated an excellent agreement between the results obtained by employing these models
and the published results.

These models that are presented in Egs. (A.1)-(A.3) are function of the crack compliance and crack
location in addition to the element material and geometrical properties. In addition, these models are re-
duced to the stiffness matrices of healthy finite elements if the crack compliance is zero. If the crack
compliance approaches infinity, which corresponds to a completely failed element, the stiffness matrices are
reduced to the zero matrices.

If these finite element models are used in modeling of a cracked structure, the global stiffness matrix of
the structure can be written as a function of the crack depth and crack location in addition to the geo-
metrical and material properties of the element. i.e.:

K = K(a, x) (5)

where a and x are the vectors of crack depth and crack location in element local coordinate system.

3. Crack parameter estimation
3.1. Objective function

The crack parameter estimation is the process of finding the set of crack parameters (crack depth and
crack location) that reproduce the modal data (natural frequencies and mode shapes) of the defected
structure. Many objective functions have been suggested to formulate this problem. One objective function
(Ruotolo and Surace, 1997) is based on minimizing the difference between the measured and estimated
modal data. Mathematically this objective function is given by

minimizez lwia — ol + ||Uia — Unl| (6)
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where U,y and Uy, are the ith mode defected and healthy mode shapes. w;,y and w;, are the ith natural
frequencies for the healthy and defected structures.

A different form (Abdalla et al., 2000), which is used in this study, is based on finding the crack para-
meters vector that minimizes the difference between the healthy and defected stiffness matrices, and at the
same time satisfy the eigenvalue equation and the corresponding constrains on the crack location and crack
depth ratio. In this form the modal data of the cracked structure is used as a constraint. Using this objective
function the problem can be stated as follows.

Given the modal data for the first m modes of a structure that consists of n elements, it is required to find

the crack location x; and the crack depth ratio (a/w), (i = 1,2,...,n) that minimizes the Frobenius norm of
the difference between the healthy and defected stiffness matrices i.e.:
minimize||Ky — Kq((a/w);,x;)|| (7)
Subjected to the constraints:
0 é X S l,‘ (8)
0< (a/w), <1 9)
||Kdu_,-—co12.MujH:0 i=1,2,...,n and j=1,2,...,m (10)

where Kj is the stiffness matrix for the defected structure, Ky, is the stiffness matrix for the healthy structure,
M 1is the mass matrix of the structure, u; is the jth measured mode shape for the defected structure, w; is the
natural frequency corresponding to the jth mode shape of the defected structure, » is the number of ele-
ments in the structure and m is the number of modes of the defected structure that are used in the crack
parameter estimation.

In certain cases of defected structures, a set of distributed cracks within the structures may produce the
same mode-shapes as that of the actual state of defect. However, the natural frequencies will not be the
same definitely, in the sense that both the mode-shapes and natural frequencies are being involved in
the modal-data constraint, i.e., Eq. (10). Thus the optimization problem will converge to the actual state of
defect. In addition, in case of structures that having symmetrical conditions of geometry, material and
boundary conditions, two different states of defect in two symmetrical elements can produce the same
natural frequencies. On the other hand, the mode-shapes will be different which ensures that the optimi-
zation algorithm will converge to the actual state of defect due to the same reason.

The first two constraints that are presented in Eqgs. (8) and (9) are classified as geometrical constraints
while the third constraint, Eq. (10), is known as natural constraint. The eigenvalue constraint given by Eq.
(10) can not be satisfied exactly because of the errors in the experimental modal data and round off errors.
Therefore, it is always replaced by

[ Katej — o; Muy|| < & (11)

where ¢ is the eigenvalue constraint tolerance. The value of this tolerance depends on the error in the modal
data and the required accuracy in the estimated crack parameters. This parameter is given an initial value
and then reduced successively. Each time, the problem is solved with the new value of ¢ and the norm of the
resulting solution vector is compared with the norm of the solution vector for the previous value of &, this
process is continued untill the change in the norm of the solution vector with the reduction of ¢ is negligible.

This set of constraints along with the objective function forms a convex programming problem. Hence,
any optimization solution procedure will converge to the global minimum. Each constraint in Egs. (8) and
(9) actually, represents two constraints. Writing the constraints in the standard form one gets:

gi=—x<0 (12)



5394 M.H.F. Dado, O.A. Shpli | International Journal of Solids and Structures 40 (2003) 5389-5406

gi=x—1;<0 (13)
g = —(a/w),;<0 (14)
ga = (a/w); = 1<0 (15)
g5_i:||Kdu,—wau_,\|—s<0 i=1,2,...,n and j=12,....m (16)

This problem can be transformed into unconstrained optimization problem using the exterior penalty
functions. This is an appropriate choice since the resulting objective function is continuous and there is no
constraints on the initial guess. Using external penalty functions the objective function becomes:

F = ||Kn — Ka(xi, (a/w),)[| + ) (<g1i>2 + (@) + (&)’ + (g4i>2> +rYy (g5’ (17)
i—1 =
() = {gklf g >0
8 0 gui <0
(g 4>{g51 g5 >0
* 0 g5<0

k=1,2,3,4,i=1,2,...,nand j=1,2,....,m

The optimum solution for this optimization problem can be found using any search method for solving
optimization problems, such as the univariate or the steepest descent direction with optimal step length.

3.2. Reduced modal data

In practical fault detection problems the number of degrees of freedom is usually very large. In addition
some of the degrees of freedom are difficult or cannot be measured. Therefore the number of degrees of
freedom that are used in the fault detection is usually less than the total number of degrees of freedom in the
structure. This affects directly the modal data constrain, which is given by

Kq — ?MJu = [0] (18)
This constraint, which has the general form:

Bu=0 (19)
uses all the degrees of freedom in the structure (measured or unmeasured). It must either be replaced by an
equation that contains only the measured degrees of freedom (matrix reduction) or the eigenvector ¥ must
be expanded by estimating the unmeasured degrees of freedom. Many schemes can be used to perform this

task. The simplest one is that known as Guyan reduction. In the scheme Eq. (19) can be written in the form
of two matrix equations such that:

Bllllk + Blzllu =0 (20)

Bu; + Byu, =0 (21)

where u; is the vector of known eigenvalues, u, is the vector of unknown eigenvalues and B;; are sub
matrices obtained by partitioning the matrix B. Eq. (21) can be solved for the unknown vector of eigen-
values, which gives

u, = —B;21B2]uk (22)
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and the expanded eigenvector is given by

I
e [B;;le ] * -
substituting Eq. (23) into Eq. (20) yields the reduced eigenvalue constraint equation, which is given by
[Bii — Bi»B5, By Ju, = 0 (24)

This equation can be used instead of the eigenvalue constraint Eq. (20).

Another scheme (Friswell et al., 1998), which is known as the mode shape projection algorithm, is based
on finding the vector of unknown eigenvalues that minimizes the error force vector. In fault detection
literature, the error force vector R is given by

Rk opm| | <1z 2] ] (25)

The vector of unknown eigenvalues is the one that minimizes the norm of R i.e.:

u, = min(R"R) (26)

which has the minimizing solution:
w =—(22,)"'2" 2, (27)

the expanded eigenvector becomes:

1
u= - u 28
|-z 2z, | @)
the reduced eigenvalue constraints equation becomes:

[B” - B,(2!2,)'22, }

_ uy =0 29
By — Bn(Z!Z,)'277, | " (29)

both schemes can be used in the case of reduced modal data problems, but it is noted that the mode shape
projection algorithm is more efficient computationally. Since the mode shape is expanded once and the
expanded mode shape is used in the solution of the problem. In the case of Guyan reduction, the eigen-
vector must be expanded each time the objective function is evaluated.

3.3. Error in the simulation modal data

Data that are obtained experimentally have always some error. This error, which cannot be avoided,
depends on the accuracy of the measuring devices and the experience of the person who conducts the
experimental work. Experience has shown that the error in experimental work follows the normal distri-
bution with certain mean and standard deviation. One type of error distribution that is well known in fault
detection is the white noise. This type of error, which follows the normal distribution, has zero mean and a
standard deviation of unity.

One of the methods for error simulation (Abdalla et al., 2000) that is commonly used in fault detection
with maximum percentage error E is given by

N
Up = U+ 55 EU (30)

where N is a random number that follows the normal distribution, U is the mode shape that has an error
level E and U is the error free mode shape. It is noted that in this formula the error is a function of the mode
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shape itself. Even though this form is used in fault detection, it is not accurate in simulating errors in
measurements, sense the error increases as the modal value U increases, but actually if a physical quantity is
measured using a certain device with an accuracy 4 the error is independent of the measured value.

Another formula for error simulation that is commonly used in modeling random error in signal pro-
cessing and communications, is obtained by adding a random value that is independent of the mode shape
itself, this form is given by

Us=U+ N4 (31)

where N is a random number that follows the normal distribution and 4 is a constant that represents the
accuracy of the measuring system. The value of 4 can be represented as a certain percentage of the greatest
absolute value of the measured modal displacement. Therefore, the noise can be simulated by

E
= —— NUpax 32
Ug=U+ 100 Una (32)
this formula is more realistic in simulating experimental error than that formula that is presented in
Eq. (30).

4. Numerical examples

In this section, three examples for the application of the crack parameter estimation problem for dif-
ferent structures are presented. These examples are a beam with two cracks, a three-dimensional truss with
two cracked elements and a two-dimensional frame with one cracked element.

Since no experimental data is available a simulated experimental data is obtained by solving the cor-
responding eigenvalue problem of the cracked structure. The error in the simulation modal data is emulated
by a white noise given by Eq. (32). When reduced modal data is involved the mode shape projection al-
gorithm is used in expanding the mode shapes.

The factors that are expected to affect the crack parameter estimation results are the error level, the
number of modes used and the use of reduced modal data. The effect of these factors will be demonstrated
through out the presented examples.

4.1. A cantilever beam with two cracks

Fig. 1 shows a rectangle cross-section cantilever beam with two uniform depth cracks. The beam is made
of steel with modulus of elasticity £ = 207 GPa and mass density = 7795 kg/m?3. The cracks are located at
0.25 and 0.65 m from the fixed end and have crack depth ratios of 0.35 and 0.25, respectively. This beam is
divided into 10 finite elements each 0.1 m long.

| 0.65m |
-
V4 025m 5

2@ @/ @ 6 ©® @ @ A @ 3

r 1/ 1 1 1 17T T V
1 2 /3 4 5 6 /7 8 4@ o} 005m
- —
alw =0.35 alw =0.25 A Section A-A
L im
™ [

Fig. 1. Rectangle cross-section cantilever beam with two cracks.
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The crack compliance for this crack is given by (Shpli and Dado, submitted for publication):

c=% (1.98(%)2 - 3.277(%)3 n 14.251(%)4 — 31.08(%)5 +62.79(%)6 - 102.171(%)7

a8 an\d an 1o
+146.404( )" ~127.69( %)+ 61.504( %) ) (33)
w w w
where w is the beam cross-section height, a is the crack depth, 7 is the second moment of area of the beam
cross-section and E the modulus of elasticity of the beam material.

Fig. 2 shows the estimated crack depth ratio for the cantilever beam with two cracks using the first five
complete mode shapes with white nose that have 0.0%, 3.0% and 7.0% error levels. The figure indicates that
the error in the estimated results increased as the error level is increased. Cracks with small depth ratios are
indicated in the healthy elements due to the error in the modal data. The estimated depth ratios for these
cracks depend on the error level. It is clear that small cracks may be lost and the crack with the smallest
depth ratio that can be detected accurately depends on the level of error in the modal data.

Table 1 shows the estimated crack location for this case which indicates that the cracks location for the
actual cracks are recovered accurately.

Fig. 3 shows the estimated crack depth ratio for the same beam using complete modal data with white
noise that has 3.0% error level and using the first three, five and seven mode shapes. The results indicate
that the error in the estimated crack depth ratio decreases as the number of modes increases.

Fig. 4 shows the estimated crack depth ratio for the same cantilever beam using error free modal data.
The results represented in this figure are obtained using the first three and five mode shapes for complete
and reduced modal data. In the cases of reduced modal data only the translation displacements are used.
This figure indicates that both the crack depth ratio and the crack location are recovered accurately
regardless of the number of modes and wither complete or reduced modal data is used.
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Fig. 2. The estimated crack depth ratio for a cantilever beam with two cracks using the first five complete mode shapes and white noise
with different error levels.
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Table 1
Estimated crack location for a cantilever beam with two cracks using the first five complete mode shapes and different noise levels with
Zero mean

No. Crack location in element local coordinates (m)
0.0% noise 3.0% noise 7.0% noise
1 0.057 0.100 0.042
2 0.050 0.100 0.000
3 0.050 0.050 0.050
4 0.037 0.050 0.052
5 0.010 0.025 0.045
6 0.083 0.100 0.100
7 0.050 0.050 0.050
8 0.093 0.080 0.043
9 0.010 0.047 0.100
10 0.060 0.038 0.101
0.4
Il The first three modes
0.351 The first five modes
N % i
. 03] §é The first seven modes
3 N
[
 o2] . .
3 N \
8 N \
5 0.15 N\ N
5 \ \
N N
\ N
0.11 \ N
N N
N N
N \
0.051 N N
\ § . \
o ISz BN VH ZH Y7H 8 &é V. Y B~

=
N
w
£

5 6
Element Number

~
[ee]
©
5

Fig. 3. The estimated crack depth ratio for a cantilever beam with two cracks using complete modal data with white noise that has 3.0%
error level and different numbers of mode shapes.

Fig. 5 shows the effect of the mean of the error distribution on the estimated crank depth ratio for the
cantilever beam shown in Fig. 1. The results shown in Fig. 5 were obtained using the first five mode shaper
with 2.0% error level. The reduced modal data used in the crack parameter estimation are the transverse
displacements at nodes two to eleven. It is noted that as the mean of the error distribution increases the
error in the estimated results increases. Even though the actual defects can be identified.

4.2. Three-dimensional truss with two cracks

Fig. 6 shows a three-dimensional truss consisting of 18 elements that are connected between nine nodes.
Each element has a rectangle cross-section with a cross-section modulus £4 = 517.5 M N and material
density p = 7795 kg/m?3. The truss has two cracked elements that are element 3 with a crack depth ratio of
0.40 and element 13 with 0.28 crack depth ratio.

The axial compliance for a uniform crack of depth « in rectangle cross-section element is (Shpli and
Dado, submitted for publication):
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Fig. 4. The estimated crack depth ratio for a cantilever beam with two cracks using error-free reduced modal data with different
numbers of mode shapes.
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Fig. 5. The estimated crack depth ratio for a cantilever beam with two cracks using the first five reduced mode shapes with 2.0% error
level and different values for the mean of the error distribution.

c :Z—Z (3.9601(%)2 _ 1.08786(%)3 + 37.2970(%)4 _ 67.3973(%)5 + 199.848(%)6

_ 424.037(%)7 n 883.025(%)8 - 938.075(%)9 + 601.704(%) 10) (34)

where w is the height of the element cross-section, a is the crack depth, 4 is the element cross-section area
and E is the modulus of elasticity of the element material.

Fig. 7 shows the estimated crack depth ratios for the three dimensional truss using the first five complete
mode shapes with white noise that have 0.0%, 3.0% and 7.0% error level. The figure indicates that the error
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Fig. 6. Three-dimensional truss with two cracked elements.
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Fig. 7. The estimated crack depth ratio for a three-dimensional truss with two cracks using the first five complete mode shapes and
white noise with deferent levels of error.

in the estimated crack depth ratio increases by increasing the error level, but still the actual cracks are
clearly indicated.

Fig. 8 shows the estimated crack depth ratios for the same truss using the first five mode shapes with
white noise that has 3.0% error level. In this figure the results for complete modal data along with two cases
of incomplete modal data are shown. The degrees of freedom encountered in these two cases are shown in
Table 2. It is obvious that using reduced modal data will increase the error in the estimated crack
parameters. As the number of measured degrees of freedom used in the crack parameter estimation
problem decreases the error in the estimated crack depth ratio and crack location increases.
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Fig. 8. The estimated crack depth ratio for three-dimension truss using the first five modes with white noise that has 3.0% error and
different cases of reduced modal data.

Table 2

Measured degrees of freedom in the cases of reduced modal data for a three-dimensional truss with two cracks
Case no. X y z
Case 1 9,8.,7 9,7,5 8,7,5
Case 2 9,5 8,6 7.4

4.3. Two-dimensional frame with one crack

Fig. 9 shows a two-dimensional frame structure that consists of 12 elements connected between 8§ joints.
Each element has a rectangle cross-section with modulus of elasticity £ = 207 GPa and density p = 7795
kg/m3. The frame has one cracked element that is element 10. The crack is located at 0.35 m for joint 5 and
has a crack depth ratio of 0.28.

The crack compliance elements (¢;1, ¢33¢13 and ¢3;) for a uniform depth crack in a rectangle cross-section
element can be derived using Eq. (5) and the appropriate expressions for the stress intensity factor. The
crack compliance elements ¢;; and ¢33 are given by Egs. (34) and (33) respectively. The coupling compliance
elements c;3 and c3; are equal and given by (Shpli and Dado, submitted for publication):

C13 = (31

- % (1.98(3})2 - 1.910(%)3 + 15.919(%)4 - 34.823(%)5 + 83.282(%)6

- 152.564(%)7 + 255.078(%)8 - 243.972(%)9 + 132.878(%) 10) (35)

where w is the height of the element cross-section, a is the crack depth, 4 is the element cross-section area
and E is the modulus of elasticity of the element material.
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Fig. 9. Two-dimensional frame structure.

0.3
Il 0.0% error
Y 3.0° N
0.25 - 3.0% error §g
N7
7.0% error §é
N
g 021 \
s §é
« NV
< §¢
= \
80151 §é
X \/
Q §¢
g N/
© 011 §§
N7
N
N
N
N
N
0.05 Y
BN e
7™\ 7 7 % N 7

Element Number

Fig. 10. The estimated crack depth ratio for a two-dimensional frame with one cracked element using the first five complete mode
shapes with white noise that has different error levels.

Fig. 10 shows the estimated crack depth ratio for this frame structure using the first five complete mode
shapes with white noise that have 0.0%, 3.0% and 7.0% error level. The results show that the estimated
crack depth ratio for the true cracks are estimated accurately. The error in the estimated crack depth ratio
depends on the level of error in the modal data.
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5. Conclusions

This study showed that the cracked finite element models are efficient in estimating the crack depth ratio
and location in complex structures. The results are affected by the noise level, the number of modes used
and the reduced modal data. Cracks with small depth ratio are extremely affected by these factors and may
be completely lost while cracks with high depth ratio are quantified accurately. It is also noted that using
error free modal data will result in accurate estimation of the crack depth ratio regardless of the number of
modes and wither complete or incomplete modal data is used.

Appendix A. Finite element models for cracked simple structural elements
Finite element models for cracked structural elements (Shpli and Dado, submitted for publication).

A.1. Finite element model for cracked axially loaded element

EA [1 -1
- Al
= T e {—1 1 ] (A1)

where E the modulus of elasticity, 4 the cross-section area, / the length of the element and c is the crack
compliance.

A.2. Finite element model for cracked beam element

6(1 + cEI) 3(1% + 2xcEI) —6(1 + cEI) 3(12 +2(1 — x)cEI)
o 6E1 3(1% + 2xcEl) 2(P + 3x*cEI) —3(I? + 2xcEI) (P + 6x(1 — x)cEI)
A —6(1 + cEI) —3(P + 2xcEl) 6(1 + cEI) —3(P242(1 - x)cEI)
3(242(1 —x)cEI) (P + 6x(l —x)cEI) —3(12+2(I —x)cEI) 2(I* + 3(I — x)*cEI)
(A.2)

A = 9(P + 2xcEI)(I? + 2(I — x)cEI) — 6(1 + cEI(I* + 2x(I — x)cEI)

where E is the modulus of elasticity of the element material, / the second moment of area of the element
cross-section, / the length of the element, x is the location of the crack in element local coordinates and
¢ is the crack compliance.

A.3. Finite element model for a cracked two-dimensional frame element

1 [k ki
1 A3
A |:k21 ky o
2o, ¢3! P(l+ cudE)
A= "3 {(1 —3x(1—x>>(c““3 Tt g ) T T e

where E is the modulus of elasticity of the element material, 4 is the element cross-section area, / the second
moment of area of the element cross-section, / the length of the element, x is the location of the crack in
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element local coordinate, ¢;; the crack compliance in axial loading mode, ¢33 the crack compliance in
bending mode of loading, ¢;3 the crack axial-bending coupling compliance, c3; is the crack bending-axial
coupling compliance and kij are 3 x 3 sub matrices given by

-—1033(12 — 3X(l —X)) _ 14 —0131(2)6 — l) —01312(3x — 2]) )
3EI 1212E2 2E1 6ET1
76311(2)6 — l) 76331 7()33])6
T A - (0116’33 - 013C31) AE —x(011033 - 0136’31)
ki = _ U+ cuEd) _ Pl +enkEd)
2AIE? 2AIE?
703112(3)6 — 21) 7C33])C 76‘331)62 2
T AE —X(011€33 - 013031) AE —X (0116’33 - 013031)
_lz(l-f—Cl]EA) _13(1+C“EA)
L 2AIE? 2AIE? J
[es3l(12 = 3x(1 — x)) el(2x = 1) CenP(2x- 1) 1
3/E 2ET 6E1
14
+ 12EI2
e l(2x — 1 ¢33l cl(l—x
% ﬁ-f- (cniess — ci3e3n) —% — (I —x)(cness — cizesn)
ki, =
I[(I+ cnEA) P(I+cnEA)
AIE? 241E?
e P(2x — 1 c33lx cyxl(l —x
! éEl ) 3E3A *x(011€33 - 013031) *% *x(l *X)(CMCB - C13031)
12(1+C11EA) 13(1+6’11EA)2
L 2A4IE? 6AIE i
[e33l(12 = 3x(1 — x)) e l(2x = 1) CenlP(2x—1) ]
3IE 2EI 6EI
l4
+ 12EI?
c3l(2x — 1 ca3l e3l(l —x
%[) %-ﬁ- (011033 - 613031) —% - (l —x)(cnczs - 013031)
oy =
I(I+C11EA) 12(1+C11EA)
AIE? 24IE?
e P(2x — 1 c3slx cxl(l —x
A éEI ) 3E3A —X(011€33 - 013031) —% —x(l —x)(c“c33 - 013031)
12(1+C11EA) 13(l+611EA)
L 6AIE? 2AIE? ]
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-—C33(12_3X(l_x)) _cnl(2x—l) C1312(3X—1) T
3EA 2EI 6EI
14
C1212E?
enl(2x—1 c33l cl(l—x
. - (2E1 ) *%* (011033 *013031) = J(EA—) + (l*x)(C11C33 *013031)
o _Z(Z+01]EA) 12(1+C|1EA)
AIE? 2AIE?
ei3lP(3x—1 exsl(l—x cx3l(1—x)?
= 6(E[ ) = t(?A )+(lix><cllc33fcl3031) 7%*)41*)()(0116‘3376'13631)
P(I4c1 EA) _13(l+c“EA)
L 24IE? 3AIE? |
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